Answer:
Standard form = (x + 5)² + y² = 117
General Form = x² + 10x + y² - 92 = 0
Step-by-step explanation:
(x - h)² + (y - k)² = r²
Find radius using:
![\sf Distance \ between \ two \ points = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/n13wyf4ud5r7erdgdydznapf2avosfik5h.png)
![\rightarrow \sf radius : √((-5-4)^+(0-(-6))^2) \ = \ 3√(13) \ \ units](https://img.qammunity.org/2023/formulas/mathematics/high-school/ehnko3yu9gntq8qss6kxf6cq9qzqebyqpg.png)
Find equation inserting values: Given center: (-5, 0)
⇒ (x - (-5))² + (y - 0)² = (3√13)²
⇒ (x + 5)² + y² = 117
⇒ x² + 10x + 25 + y² - 117 = 0
⇒ x² + 10x + y² - 92 = 0