Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Step-by-step explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec