213,575 views
43 votes
43 votes
In a quadrilateral mnpq, <M=48°,<N =80° and P is three times than <Q. Find<P. ​

User Moise
by
2.9k points

1 Answer

20 votes
20 votes

Answer:


\boxed{ \rm\angle P = \tt174{ {}^ \circ} }

Explanation:

Given,

  • ∠M=48°
  • ∠N = 80°
  • ∠P = Three Times more than ∠Q.

In a quadrilateral.

To Find:

  • ∠P

Solution:

We know that in quadrilateral MNPQ,


\rm \: \boxed{ \rm ∠M +∠ N +∠ P+ ∠Q = 360 ^( \circ)}


\rm \implies \: 48 {}^ \circ + 80 {}^ \circ + \angle P + \cfrac{1}{3} \angle \: P = 360 {}^(\circ)


\rm \implies \angle P + \cfrac{1}{3}\angle P = 360 { {}^ \circ} - 48{ {}^ \circ} - 80 {{}^ \circ}


\implies \rm \: \cfrac{4}{3} \angle P = 232 {{}^ \circ}


\rm \: \implies \: \angle P = 232 {}^(\circ) * \cfrac{3}{4}


\rm \implies \: \angle P = 174{ {}^ \circ}

Thus, ∠P will be 174° .

User Geinmachi
by
2.7k points