Answer:
![x=24, y=10, z=17](https://img.qammunity.org/2021/formulas/mathematics/college/baqmpbppuld8xmp02owj1ll4fs3l9n1vby.png)
Explanation:
We know that
.
Then by CPCTC, ∠P≅∠C, ∠H≅∠N, and ∠S≅∠F.
Therefore, let’s solve for each of the angle relations.
∠P≅∠C:
We know that ∠P is 36°. ∠C is (4z-32)°. Therefore:
![36=4z-32](https://img.qammunity.org/2021/formulas/mathematics/college/ie3dtusdw4xcz0aag2xewr2wejknnhjobj.png)
Solve for z:
![\begin{aligned}36&=4z-32\;\;\; \text{Add 32 to both sides}\\68&=4z\;\;\;\;\;\;\;\;\;\;\;\text{Divide both sides by 4}\\17&=z\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/ezbf3xww8r78sv1br6joado68huiqk63y3.png)
So, the value of z is 17.
∠H≅∠N
∠H is (6x-29) and ∠N is 115. So:
![6x-29=115](https://img.qammunity.org/2021/formulas/mathematics/college/qhebyk39cf8gc3hq0c9r05bh6xayv9bkub.png)
Solve for x:
![\begin{aligned} 6x-29&=115\;\;\;\;\;\;\text{Add 29 to both sides}\\6x&=144\;\;\;\;\;\;\text{Divide both sides by 4}\\\ x&=24\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/q8tjdly94vvdx09bxf6kng8yq31g4dm8t5.png)
Therefore, the value of x is 24.
∠S≅∠F
We will need to find ∠S.
We already know that ∠P is 36.
∠H will be (6x-29). Substitute 24 for x to acquire: (6(24)-29)=144-29=115.
A triangle always totals 180°. Therefore, 115+36+∠S=180 or 151+∠S=180.
Therefore, ∠S=29.
∠F is (3y-1). So:
![29=3y-1](https://img.qammunity.org/2021/formulas/mathematics/college/c2e8eab9plz1z3akl9kvl9sgpexjld5cjx.png)
Solve for y:
![\begin{aligned} 29&=3y-1\;\;\;\;\;\text{Add 1 to both sides}\\ 30&=3y\;\;\;\;\;\;\;\;\;\;\text{Divide both sides by 3}\\ 10&=y\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/x4vqz1i6j0f3v4unvrrxg1sxg5mzw3judr.png)
Therefore, the value of y is 10.
So, x=24, y=10, and z=17.
And we are done!