Answer:
![f(x+h)=- 2x^2-4xh-2h^2 + 2x+2h + 8](https://img.qammunity.org/2021/formulas/mathematics/college/ol0a7ced2prp2pp3df763ca7podkvbqv66.png)
![f ( x + h ) - f ( x )= h(-4x-2h+2)](https://img.qammunity.org/2021/formulas/mathematics/college/ffwq3n9uccg6wudzdsxcct86xhvhi77qzs.png)
Explanation:
Given the function:
![f ( x ) = - 2x^2 + 2x + 8](https://img.qammunity.org/2021/formulas/mathematics/college/gcblzt7jp97laa99wv53f8cd2qbl3llbgr.png)
Find
- f ( x + h )
- f ( x + h ) - f ( x )
Recall the identity to square a binomial:
![(a+b)^2=a^2+2ab+b^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/i78c6m27tvn37rh92mblgc3owe9vkpu7p0.png)
![f(x+h)=- 2(x+h)^2 + 2(x+h) + 8](https://img.qammunity.org/2021/formulas/mathematics/college/27je05g7x5a9hy90irybcg0uxsl7wqrr9k.png)
Squaring the binomial:
![f(x+h)=- 2(x^2+2xh+h^2) + 2(x+h) + 8](https://img.qammunity.org/2021/formulas/mathematics/college/y829topyt6pjaggloozb6bragliuhkouev.png)
Multiplying:
![\boxed{f(x+h)=- 2x^2-4xh-2h^2 + 2x+2h + 8}](https://img.qammunity.org/2021/formulas/mathematics/college/pn3ho7mndlgueraru4m68dbduwax94m0uz.png)
--------------------------------------------------------------
To compute f ( x + h ) - f ( x ), we use the last result:
![f ( x + h ) - f ( x )=- 2x^2-4xh-2h^2 + 2x+2h + 8-(- 2x^2 + 2x + 8)](https://img.qammunity.org/2021/formulas/mathematics/college/lm3qzwttjfrhdg1xutwwxkjwi4i8jugfrh.png)
Multiplying:
![f ( x + h ) - f ( x )=- 2x^2-4xh-2h^2 + 2x+2h + 8+ 2x^2 - 2x - 8](https://img.qammunity.org/2021/formulas/mathematics/college/bxsagzs6uuofzks9p4ug9urawx0x5prx8f.png)
Simplifying similar terms:
![f ( x + h ) - f ( x )= -4xh-2h^2+2h](https://img.qammunity.org/2021/formulas/mathematics/college/kfnxtzlq51w0dqqj5hjx4niuyfy8nbr7k5.png)
Factoring:
![\boxed{f ( x + h ) - f ( x )= h(-4x-2h+2)}](https://img.qammunity.org/2021/formulas/mathematics/college/skmttxp9dxc5e3k07bza0c1zluef9hledy.png)
Note: This expression is commonly used to compute the first derivative of a function by its definition.