Answer:
![f(x) = -(7)/(4)|x-5|+0](https://img.qammunity.org/2023/formulas/mathematics/college/rrmidptdlnfx5uobml9kf7bgd9zp30bg7y.png)
Step-by-step explanation:
The function in the coordinate Plane is an absolute value function . Consider the parent function
![f(x) = |x|](https://img.qammunity.org/2023/formulas/mathematics/college/up04supu7mh2nan09nhi03oyl1t2bjrosl.png)
Recall the properties of transformation
- f(x+a), If a<0 ⇒ It moves to right
- a.f(x),If a<0 ⇒ It flips upsidedown
- f(x)+a,If a>0 ⇒ It moves up & a<0 It moves down
From the inspection of the graph,It has moved to right by 5 units, Thus
![f(x - 5) = |x - 5|](https://img.qammunity.org/2023/formulas/mathematics/college/iy7lyj4s9rcb7lvcgtiomf2bcwh6axw4lx.png)
Apparently, It has neither shifted up or down, hence
![f(x - 5) +0= |x - 5|+0](https://img.qammunity.org/2023/formulas/mathematics/college/1iuuheuocswqng9thzjpb7aej8zi9d0apl.png)
Looking at the graph, we can see that it has been reflected vertically. It tells us we have to multiply it by a negative constant
![-a f(x - 5) +0= -a |x - 5| +0](https://img.qammunity.org/2023/formulas/mathematics/college/19k5nqzj8oh3ztvmt8fw50w3r45wozpt7k.png)
take (9,7) to figure out a.
- set x to 9 and the LHS expression to 7
![-a | 9- 5| =7](https://img.qammunity.org/2023/formulas/mathematics/college/kesx91zcsgaukeyqak7cno3agd9kr445og.png)
Solving the equation yields:
![\boxed{a = - (7)/(4) }](https://img.qammunity.org/2023/formulas/mathematics/college/6ft6pie0ykm1ihu2imlgvmkrp9rhni10mj.png)
hence, our function is
![\boxed+0](https://img.qammunity.org/2023/formulas/mathematics/college/6cfvmb79a874ww590cuf9b8wwzqtnkqqdk.png)