149k views
2 votes
Please answer this question




Please answer this question ​-example-1

2 Answers

4 votes

Answer:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

Explanation:

Given:


\displaystyle \large{y=\log (x\sin x)}

Recall the (common) logarithmic differentiation & chain rules:


\displaystyle \large{(d)/(dx)[\log (u)] = (u')/(u\ln 10)}

Let
\displaystyle \large{u=x\sin x} then:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = ((x\sin x)')/(x\sin x \ln 10)}

Recall product rules:


\displaystyle \large{[f(x)g(x)]' = f'(x)g(x)+f(x)g'(x)}

Hence:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = ((x)'\sin x + x(\sin x)')/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (\sin x + x\cos x)/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (\sin x)/(x \sin x \ln 10) + (x \cos x)/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

From above, recall that:


\displaystyle \large{(d)/(dx)(\sin x) = \cos x}\\\\\displaystyle \large{(A\pm B)/(C) = (A)/(C) \pm (B)/(C)}\\\\\displaystyle \large{(\cos x)/(\sin x) =\cot x}

Hence, the answer is:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

User Trungdinhtrong
by
8.4k points
9 votes

Answer:


(dy)/(dx)=\cot x+(1)/(x)

Explanation:


\boxed{\begin{minipage}{6 cm}\underline{Product\:Rule}\\\\$(d)/(dx)[f(x)g(x)]=f(x)g'(x)+f'(x)g(x)$\\\\\\\underline{Chain\:Rule}\\\\$(dy)/(dx)=(dy)/(du) * (du)/(dx)$\\\end{minipage}}


\textsf{Given}:y=\log (x \sin x)


\textsf{Let }u=x \sin x \implies y=\log(u)

Using the product rule, differentiate y with respect to
u:


\textsf{If }y=\log(u) \implies (dy)/(du)=(1)/(u)\implies (dy)/(du)=(1)/(x \sin x)

----------------------------------------------------------------------------------------

Differentiate
u=x \sin x with respect to x using the product rule:


\implies \textsf{Let }f(x)=x \implies f'(x)=1


\implies \textsf{Let }g(x)=\sin x \implies g'(x)=\cos x


\implies (du)/(dx)=x \cos x + \sin x

----------------------------------------------------------------------------------------

Use the chain rule to differentiate y with respect to x:


\implies (dy)/(dx)=(dy)/(du) * (du)/(dx)


\implies (dy)/(dx)=(1)/(x \sin x) * (x \cos x + \sin x)


\implies (dy)/(dx)=(x \cos x + \sin x)/(x \sin x)


\implies (dy)/(dx)=(x \cos x)/(x \sin x)+(\sin x)/(x \sin x)


\implies (dy)/(dx)=\cot x+(1)/(x)

User Deche
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories