Answer:
z = 20(cosπ/6 + isinπ/6)
Explanation:
Given the complex value
z1 = -10√3 - 10i
The polar form of the complex number is expressed as;
z = r(costheta + isintheta)
r is the modulus of the complex number
theta is the argument
r = |z1| = √x²+y²
r = √(-10√3)²+(-10)²
r = √(100(3)+100
r = √400
r = 20
theta = tan^-1(y/x)
theta = tan^-1(-10/-10√3)
theta = tan^-1(1/√3)
theta = 30°
Substitute into the polar form
z = 20(cos 30°+isin30°)
z = 20(cosπ/6 + isinπ/6)