179k views
17 votes
Please help me do this mathematics question

Please help me do this mathematics question-example-1
User Jamella
by
8.9k points

1 Answer

6 votes


\textbf{(i)}\\\\y=f(x)= (x)/(4+x)\\\\\\(dy)/(dx)= \lim \limits_(h \to 0) (f(x+h)-f(x))/(h)\\\\\\~~~~~=\lim \limits_(h \to 0)((x+h)/(4+x+h)-(x)/(4+x))/(h)\\\\\\~~~~~~=\lim \limits_(h \to 0)\frac{\tfrac{(x+h)(4+x)-x(4+x+h)}{(4+x+h)(4+x)}}{h}\\\\\\~~~~~~= \lim \limits_( h \to 0) (4x+x^2 +4h+hx -4x-x^2 -hx)/(h(4+x+h)(4+x))\\\\\\~~~~~~=\lim \limits_( h \to 0)(4h)/(h(4+x+h)(4+x))\\\\\\~~~~~~=\lim \limits_(h \to 0) (4)/((4+x+h)(4+x))\\


~~~~~~~~= ( 4)/((4+x+0)(4+x))\\\\\\~~~~~~~~= (4)/((4+x)^2)


\textbf{(ii)}\\\\\text{Given that,}~ y = f(x) = \sin 2x\\\\\\(dy)/(dx) = \lim \limits_(h \to 0) (f(x+h) - f(x) )/(h)\\\\\\~~~~~~=\lim \limits_(h \to 0) (\sin(2x+2h)-\sin 2x)/(h)\\\\\\~~~~~~=\lim \limits_(h \to 0) (2 \sin \left( (2x +2h -2x)/(2) \right) \cos \left((2x+2h+2x)/(2) \right))/(h)\\\\\\~~~~~~=\lim \limits_(h \to 0) \frac{2 \sin \left( \frac {2h}2 \right) \cos \left(\frac{ 4x+2h} 2\right)}{h}\\\\\\


~~~~~~=\lim \limits_(h \to 0) (2 \sin h \cdot \cos \left[ (2(2x+h))/(2)\right] )/(h)\\\\\\~~~~~~=\lim \limits_(h \to 0) (2 \sin h \cdot \cos(2x+h) )/(h)\\\\\\~~~~~~=2\left(\lim \limits_(h \to 0) (\sin h)/( h) \right) \cdot \lim \limits_(h \to 0) \cos (2x+h)\\\\\\~~~~~~=2\cdot 1 \cdot \cos(2x+ 0)\\\\\\~~~~~~=2 \cos 2x

User Jcolino
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories