Answer:
f(g(x)) = (x + 2)² = x² + 4x + 4
g(f(x)) = x² + 2
Explanation:
∵ f(x) = x²
∵ g(x) = x + 2
→ f(g(x)) means substitute x of f(x) by g(x)
∵ f(g(x)) = f(x + 2)
∴ f(x + 2) = (x + 2)²
∵ (x + 2)² = (x)(x) + (x)(2) + (2)(x) + (2)(2)
∴ (x + 2)² = x² + 2x + 2x + 4
→ Add the like terms
∴ (x + 2)² = x² + 4x + 4
∴ f(g(x)) = (x + 2)² = x² + 4x + 4
→ g(f(x)) means substitute x of g(x) by f(x)
∵ g(f(x)) = g(x²)
∴ g(x²) = x² + 2
∴ g(f(x)) = x² + 2