45.1k views
20 votes
Please help me do this question​

Please help me do this question​-example-1

2 Answers

10 votes

Answer:


\tt{ \frac{ {d}^(2) y}{d {x}^(2) } = 5 {e}^(3x) \sin(2x) + 12 {e}^(3x) \cos(2x)}

Explanation:

⠀⠀⠀⠀▩ Question


y = {e}^(3x) \sin(2x) \\ { \sf{To \: find}} \: \frac{ {d}^(2)y }{d {x}^(2) }

⠀⠀⠀⠀■ Solution

  • First finding dy/dx


\sf using \: (d)/(dx) uv = u (d)/(dx) v + v (d)/(dx) u \: formula

  • Taking derivative of sin2x and e^3x


\bold{ (dy)/(dx) = {e}^(3x) (d)/(dx) \sin(2x) + \sin(2x) (d)/(dx) {e}^(3x) } \\ \\ \bold{ (dy)/(dx) = {e}^(3x) \cos(2x) (d)/(dx) 2x + \sin(2x) {e}^(3x) (d)/(dx) 3x}

  • Multiplying


\bold{ (dy)/(dx) = {e}^(3x) * 2 \cos(2x) + \sin(3x) * 3 {e}^(3x) }

  • Value of dy/dx


\bold{ (dy)/(dx) = 2 {e}^(3x) \cos(2x) + 3 {e}^(3x) \sin(2x) }

  • Now taking derivative again using same formula as mention in first part, so that to find d²y/dx².

⠀⠀● First solving 2e^3x cos(2x)


\bold{ 2( {e}^(3x) (d)/(dx) \cos(2x) + \cos(2x) (d)/(dx) {e}^(3x)) }

  • Taking derivative of cos2x and e^3x


\bold{2( {e}^(3x) - \sin(2x) (d)/(dx) 2x + \cos(2x) {e}^(3x) (d)/(dx) 3x)} \\ \\ \bold{ - 4 {e}^(3x) \sin(2x) + 6 {e}^(3x) \cos(2x) }

⠀⠀● Now solving 3e^3x sin(2x)


\bold{ 3( {e}^(3x) (d)/(dx) \sin(2x) + \sin(2x) (d)/(dx) {e}^(3x) )}

  • Now taking derivative of sin 2x and e^3x


\bold{ 3( {e}^(3x) \cos(2x) (d)/(dx) 2x + \sin(2x) {e}^(3x) (d)/(dx) 3x)} \\ \\ \bold{ 6 {e}^(3x) \cos(2x) + 9 {e}^(3x) \sin(2x) }

  • Adding both solution


\bold{ \frac{ {d}^(2)y }{d {x}^(2) } = - 4 {e}^(3x) \sin(2x) + 6 {e}^(3x) \cos(2x) + 6 {e}^(3x) \cos(2x) + 9 {e}^(3x) \sin(2x) } \\ \\ \bold{ \frac{ {d}^(2) y}{d {x}^(2) } = 5 {e}^(3x) \sin(2x) + 12 {e}^(3x) \cos(2x) }

User Sazr
by
8.6k points
11 votes

Answer:


(d^2y)/(dx^2) = 5e^(3x) \sin (2x)+12e^(3x) \cos (2x)

Explanation:


\large \boxed{\begin{minipage}{5 cm}\textsf{\underline{Product Rule}}\\\\$ \textsf{When } \:y=uv\\\\(dy)/(dx)=u(dv)/(dx)+v (du)/(dx)$\\\end{minipage}}

Given:


y=e^(3x) \sin(2x)

First Derivative


\textsf{let } u=e^(3x) \implies (du)/(dx)=3e^(3x)


\textsf{let } v= \sin(2x) \implies (dv)/(dx)=2 \cos (2x)

Using the Product Rule:


\begin{aligned}(dy)/(dx) & =e^(3x)\cdot 2 \cos (2x) + \sin (2x) \cdot 3e^(3x)\\& = 2e^(3x) \cos (2x) + 3e^(3x) \sin (2x)\\& = e^(3x)(2 \cos (2x) + 3 \sin (2x))\end{aligned}

Second Derivative


\textsf{let } u=e^(3x) \implies (du)/(dx)=3e^(3x)


\textsf{let } v= 2 \cos (2x)+3 \sin (2x) \implies (dv)/(dx)=-4 \sin (2x) +6 \cos (2x)

Using the Product Rule:


\begin{aligned}(d^2y)/(dx^2) & =e^(3x)(-4 \sin (2x) +6 \cos (2x)) +3e^(3x) (2 \cos (2x)+3 \sin (2x))\\& = e^(3x)[-4 \sin (2x) +6 \cos (2x)+6 \cos (2x)+9 \sin (2x)]\\& = e^(3x)[5 \sin (2x) +12 \cos (2x)]\\& = 5e^(3x) \sin (2x)+12e^(3x) \cos (2x)\end{aligned}

User Eric Galluzzo
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories