45.1k views
20 votes
Please help me do this question​

Please help me do this question​-example-1

2 Answers

10 votes

Answer:


\tt{ \frac{ {d}^(2) y}{d {x}^(2) } = 5 {e}^(3x) \sin(2x) + 12 {e}^(3x) \cos(2x)}

Explanation:

⠀⠀⠀⠀▩ Question


y = {e}^(3x) \sin(2x) \\ { \sf{To \: find}} \: \frac{ {d}^(2)y }{d {x}^(2) }

⠀⠀⠀⠀■ Solution

  • First finding dy/dx


\sf using \: (d)/(dx) uv = u (d)/(dx) v + v (d)/(dx) u \: formula

  • Taking derivative of sin2x and e^3x


\bold{ (dy)/(dx) = {e}^(3x) (d)/(dx) \sin(2x) + \sin(2x) (d)/(dx) {e}^(3x) } \\ \\ \bold{ (dy)/(dx) = {e}^(3x) \cos(2x) (d)/(dx) 2x + \sin(2x) {e}^(3x) (d)/(dx) 3x}

  • Multiplying


\bold{ (dy)/(dx) = {e}^(3x) * 2 \cos(2x) + \sin(3x) * 3 {e}^(3x) }

  • Value of dy/dx


\bold{ (dy)/(dx) = 2 {e}^(3x) \cos(2x) + 3 {e}^(3x) \sin(2x) }

  • Now taking derivative again using same formula as mention in first part, so that to find d²y/dx².

⠀⠀● First solving 2e^3x cos(2x)


\bold{ 2( {e}^(3x) (d)/(dx) \cos(2x) + \cos(2x) (d)/(dx) {e}^(3x)) }

  • Taking derivative of cos2x and e^3x


\bold{2( {e}^(3x) - \sin(2x) (d)/(dx) 2x + \cos(2x) {e}^(3x) (d)/(dx) 3x)} \\ \\ \bold{ - 4 {e}^(3x) \sin(2x) + 6 {e}^(3x) \cos(2x) }

⠀⠀● Now solving 3e^3x sin(2x)


\bold{ 3( {e}^(3x) (d)/(dx) \sin(2x) + \sin(2x) (d)/(dx) {e}^(3x) )}

  • Now taking derivative of sin 2x and e^3x


\bold{ 3( {e}^(3x) \cos(2x) (d)/(dx) 2x + \sin(2x) {e}^(3x) (d)/(dx) 3x)} \\ \\ \bold{ 6 {e}^(3x) \cos(2x) + 9 {e}^(3x) \sin(2x) }

  • Adding both solution


\bold{ \frac{ {d}^(2)y }{d {x}^(2) } = - 4 {e}^(3x) \sin(2x) + 6 {e}^(3x) \cos(2x) + 6 {e}^(3x) \cos(2x) + 9 {e}^(3x) \sin(2x) } \\ \\ \bold{ \frac{ {d}^(2) y}{d {x}^(2) } = 5 {e}^(3x) \sin(2x) + 12 {e}^(3x) \cos(2x) }

User Sazr
by
3.7k points
11 votes

Answer:


(d^2y)/(dx^2) = 5e^(3x) \sin (2x)+12e^(3x) \cos (2x)

Explanation:


\large \boxed{\begin{minipage}{5 cm}\textsf{\underline{Product Rule}}\\\\$ \textsf{When } \:y=uv\\\\(dy)/(dx)=u(dv)/(dx)+v (du)/(dx)$\\\end{minipage}}

Given:


y=e^(3x) \sin(2x)

First Derivative


\textsf{let } u=e^(3x) \implies (du)/(dx)=3e^(3x)


\textsf{let } v= \sin(2x) \implies (dv)/(dx)=2 \cos (2x)

Using the Product Rule:


\begin{aligned}(dy)/(dx) & =e^(3x)\cdot 2 \cos (2x) + \sin (2x) \cdot 3e^(3x)\\& = 2e^(3x) \cos (2x) + 3e^(3x) \sin (2x)\\& = e^(3x)(2 \cos (2x) + 3 \sin (2x))\end{aligned}

Second Derivative


\textsf{let } u=e^(3x) \implies (du)/(dx)=3e^(3x)


\textsf{let } v= 2 \cos (2x)+3 \sin (2x) \implies (dv)/(dx)=-4 \sin (2x) +6 \cos (2x)

Using the Product Rule:


\begin{aligned}(d^2y)/(dx^2) & =e^(3x)(-4 \sin (2x) +6 \cos (2x)) +3e^(3x) (2 \cos (2x)+3 \sin (2x))\\& = e^(3x)[-4 \sin (2x) +6 \cos (2x)+6 \cos (2x)+9 \sin (2x)]\\& = e^(3x)[5 \sin (2x) +12 \cos (2x)]\\& = 5e^(3x) \sin (2x)+12e^(3x) \cos (2x)\end{aligned}

User Eric Galluzzo
by
3.7k points