Answer:
The required coordinates are;
A''(-3, -5), B''(0, -4), C''(0, -2), and D''(-3, 0)
Explanation:
The given coordinates of the trapezoid ABCD are;
A(-5, -3) B(-4, 0), C(-2, 0) and D(0, -3)
Therefore, we have;
For a rotation 90° counterclockwise, we have for a given coordinates of the preimage (x, y) after a rotation 90° counterclockwise, the image will be located at (y, -x)
Therefore, for the points of the trapezoid, we have;
Preimage A(-5, -3) rotated 90° counterclockwise gives image A'(-3, 5)
Preimage B(-4, 0) rotated 90° counterclockwise gives image B'(0, 4)
Preimage C(-2, 0) rotated 90° counterclockwise gives image C'(0, 2)
Preimage D(0, -3) rotated 90° counterclockwise gives image D'(-3, 0)
For a reflection across the x-axis gives the transformation, preimage location (x. y), image location after reflection (x, -y)
Therefore, we have;
For the point A'(-3, 5), reflection across the x-axis gives A''(-3, -5)
For B'(0, 4), reflection across the x-axis gives B''(0, -4)
For C'(0, 2), reflection across the x-axis gives C''(0, -2)
For D(-3, 0), reflection across the x-axis gives D''(-3, 0)
Therefore, the required coordinates are;
A''(-3, -5), B''(0, -4), C''(0, -2), and D''(-3, 0).