Answer: I =
![(11)/(6)MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/ei9qd1mu3v7pfekgtdu3h4ukr61hc8ldic.png)
Step-by-step explanation: Moment of Inertia (I) is the opposition on a rotating body. Generally, is calculated by
![I=2mr^(2)](https://img.qammunity.org/2021/formulas/physics/college/ivstf4d6q1u99ma05386fd2pvwmlwihwf3.png)
A bycicle wheel is composed of numerous parts and each part has its own moment of inertia.
Moment of inertia for this 5-spoke bike wheel will be:
Inertia of ring:
![I_(r)=m_(r)r^(2)](https://img.qammunity.org/2021/formulas/physics/college/elfctygr2trfzmfmou49w2n91gb459zdvh.png)
For the 5-spoke wheel:
![I_(r)=MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/kkbr2c4tpqqk1repxg1c3jala8v55c4ykt.png)
Inertia of spokes:
![I_(s)=(1)/(3)n.m_(s)r^(2)](https://img.qammunity.org/2021/formulas/physics/college/r4j2zov7xuzy7mnh4z4vzndhjtox9rnf6k.png)
where
n is the number of spokes
For the 5-spoke wheel, half of the total mass is the spokes, then:
![I_(s)=(1)/(3).5. (M)/(2)R^(2)](https://img.qammunity.org/2021/formulas/physics/college/h6ep53gtc74smztd79h4ack8cir2sxfvpv.png)
![I_(s)=(5)/(6)MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/q2gdqdzrgputwz5is9vxupqyd9i2kugd0n.png)
Inertia of the wheel is the sum of both inertia:
![I=I_(r)+I_(s)](https://img.qammunity.org/2021/formulas/physics/college/2to1qku9x45e5nt65zudam433ok0esya9t.png)
![I=MR^(2)+(5)/(6)MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/pr0x7j7280ti5u64gsg04nayg5l6jlghta.png)
![I=(11)/(6)MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/4kj7i6x06t628g75f5xfn99egjk1anfstp.png)
The moment of inertia of the 5-spoke bike wheel is
![I=(11)/(6)MR^(2)](https://img.qammunity.org/2021/formulas/physics/college/4kj7i6x06t628g75f5xfn99egjk1anfstp.png)