220k views
15 votes
Find the area of the triangle ABC with the coordinates of A(10, 15) B(15, 15) C(30, 9).

A= units^2

Find the area of the triangle ABC with the coordinates of A(10, 15) B(15, 15) C(30, 9). A-example-1
User Kdh
by
8.1k points

1 Answer

7 votes

Check the picture below. so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=√([ 15- 10]^2 + [ 15- 5]^2) \\\\\\ ~\hfill \boxed{a=√(125)} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=√([ 30- 15]^2 + [ 9- 15]^2) \\\\\\ ~\hfill \boxed{b=√(261)}


(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=√([ 10- 30]^2 + [ 5- 9]^2) \\\\\\ ~\hfill \boxed{c=√(416)} \\\\[-0.35em] ~\dotfill


\qquad \textit{Heron's area formula} \\\\ A=√(s(s-a)(s-b)(s-c))\qquad \begin{cases} s=(a+b+c)/(2)\\[-0.5em] \hrulefill\\ a=√(125)\\ b=√(261)\\ c=√(416)\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-√(125))(23.87-√(261))(23.87-√(416))}\implies \boxed{A\approx 90}

Find the area of the triangle ABC with the coordinates of A(10, 15) B(15, 15) C(30, 9). A-example-1
User Deepanjan Nag
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories