206k views
17 votes
Trigonometric Identities:

Verify the identity
(sin(a+b))/(sin(a-b)) =
(tan(a)+tan(b))/(tan(a)-tan(b))

2 Answers

8 votes

Take RHS


\\ \rm\Rrightarrow (tanA+tanB)/(tanA-tanB)

  • tanØ=sinØ/cosØ


\\ \rm\Rrightarrow ((sinA)/(cosA)+(sinB)/(cosB))/((sinA)/(cosA)-(sinB)/(cosB))


\\ \rm\Rrightarrow ((sinAcosB+cosAsinB)/(cosAcosB))/((sinAcosB-cosAsinB)/(cosAcosB))

  • cancel cosAcosB


\\ \rm\Rrightarrow (sinAcosB+cosAsinB)/(sinAcosB-cosAsinB)


\\ \rm\Rrightarrow (sin(A+B))/(sin(A-B))

Some important identities


\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

User Scott Bale
by
4.5k points
12 votes

Answer:


\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identities}\\\\$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B\\\\ (\sin A)/(\cos A)=\tan A$\\\end{minipage}}


(\sin (a+b))/(\sin (a-b)) & = (\sin(a) \cos (b) + \cos (a) \sin (b))/(\sin(a) \cos (b) - \cos (a) \sin (b))


(\sin (a+b))/(\sin (a-b)) & = (\sin(a) \cos (b) + \cos (a) \sin (b))/(\sin(a) \cos (b) - \cos (a) \sin (b)) * ((1)/(\cos (a) \cos (b)))/((1)/(\cos (a) \cos (b)))


(\sin (a+b))/(\sin (a-b)) & = ((\sin(a) \cos (b))/(\cos (a) \cos (b)) + (\cos (a) \sin (b))/(\cos (a) \cos (b)))/((\sin(a) \cos (b))/(\cos (a) \cos (b)) - (\cos (a) \sin (b))/(\cos (a) \cos (b)))


(\sin (a+b))/(\sin (a-b)) & = ((\sin(a))/(\cos (a)) + (\sin (b))/(\cos (b)))/((\sin(a))/(\cos (a)) - (\sin (b))/(\cos (b)))


(\sin (a+b))/(\sin (a-b))=(\tan(a)+\tan(b))/(\tan(a)-\tan(b))

User Trevoke
by
4.8k points