200k views
7 votes
Find the circumference and area of a circle with radius 4 cm. Express your answer in terms of π.

A: 8π cm; 16π cm2
B: 8π cm; 24π cm2
C: 16π cm; 50π cm2
D: 16π cm; 24π cm2

2 Answers

3 votes

Answer:

A. 8π cm; 16π cm2

Explanation:

circumference: C = 2πr = 2(4)π = 8π cm

area: A = π(r^2) = (4^2)π = 16π cm^2

User Mathwizurd
by
3.2k points
6 votes

Answer:

The correct answer is option (A) 8π cm; 16π cm².

Solution :

Finding the circumference of circle by substituting the values in the formula :


\longrightarrow{\pmb{\sf{C_((Circle)) = 2\pi r}}}


  • \pink\star C = Circumference

  • \pink\star π = 3.14 or 22/7

  • \pink\star r = radius


\longrightarrow{\sf{C_((Circle)) = 2 * \pi * 4}}


\longrightarrow{\sf{C_((Circle)) = 8 * \pi }}


\longrightarrow{\sf{C_((Circle)) = 8\pi }}


\star{\underline{\boxed{\sf{\red{C_((Circle)) = 8\pi \: cm}}}}}

Hence, the circumference of circle is 8π cm.


\begin{gathered}\end{gathered}

Finding the area of circle by substituting the values in the formula :


\longrightarrow{\pmb{\sf{A_((Circle)) = \pi{r}^(2)}}}


  • \purple\star A = Area

  • \purple\star π = 3.14 or 22/7

  • \purple\star r = radius


\longrightarrow{\sf{A_((Circle)) = \pi{r}^(2)}}


\longrightarrow{\sf{A_((Circle)) = \pi{(4)}^(2)}}


\longrightarrow{\sf{A_((Circle)) = \pi{(4 * 4)}}}


\longrightarrow{\sf{A_((Circle)) = \pi{(16)}}}


\longrightarrow{\sf{A_((Circle)) = \pi * 16}}


\longrightarrow{\sf{A_((Circle)) = 16\pi}}


\star{\underline{\boxed{\sf{\red{A_((Circle)) = 16\pi \: {cm}^(2)}}}}}

Hence, the area of circle is 16π cm².


\rule{300}{2.5}

User Zarrah
by
3.6k points