Solution:
![2(a + 4)(a - 4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/oq2u17om774wy9o1fm5dlobfg11n30czft.png)
Step-by-step explanations:
• Factorize the expression ( 2a² - 32 ). First, which will give us:
![2( {a}^(2) - 16)](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2qutg97cnav1d344vi5yved3c6fvqd0tn.png)
• But ( a² - 16 ) is a perfect square expression. Therefore it can further be factorized to:
![( {a}^(2) - 16)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zidnbgodjnhbpp2xrylog4am0yy0dqouqx.png)
![= (a - 16) ^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ck65v4qu6fe2h9rpon0ybsohvc65dcdu7u.png)
![= (a - 4)(a + 4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u2ttu2262qk1hq7rvbw6q6ui8cpe1vtfum.png)
• Hence joining all them will sum up to..:
![2(a - 4)(a + 4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/om3a3m0k72kefdl82ytc33wk6q8hlguzsk.png)
Hope this helps you... :)
#Carry on learning#... :)