Answer:
The slope of the secant line joining (2, 0) and (8, 48) is 8.
Explanation:
Let
, from Analytical Geometry we remember that slope of a secant line is defined by:
(Eq. 1)
Where:
,
- Initial and final independent variables, dimensionless.
,
- Initial and final dependent variables, dimensionless.
Now we proceed to find the values of each dependent variable:
![x_(A) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/1y33t64x2f1p417u9wkqlvy811jr8qcf0a.png)
![f(x_(A)) = 2^(2)-2\cdot (2)](https://img.qammunity.org/2021/formulas/mathematics/college/gi94aict2qa3jha0w8c8bictmyapugug0a.png)
![f(x_(A)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/maj6euuzno81fqjqoivju3taxwkyagc3ik.png)
![x_(B) = 8](https://img.qammunity.org/2021/formulas/mathematics/college/swieiemh373x80d4qihxupn7ajhxqme5zm.png)
![f(x_(B)) = 8^(2)-2\cdot (8)](https://img.qammunity.org/2021/formulas/mathematics/college/rfwf9xfx11tsak3f2p5lh7e3l5ro1kwx74.png)
![f(x_(B)) = 48](https://img.qammunity.org/2021/formulas/mathematics/college/hy5e3ibujddzx15upx4hkn5zw2zvd8hmhi.png)
And slope of the secant slope is determined after replacing every variable:
![m_(sec) = (48-0)/(8-2)](https://img.qammunity.org/2021/formulas/mathematics/college/e89gfxnznscs7xi8ol1ow4tg7e6l0ht2vh.png)
![m_(sec) = 8](https://img.qammunity.org/2021/formulas/mathematics/college/kj4eqp6sb1hpzd1tft5mdrgxxz1751v09s.png)
The slope of the secant line joining (2, 0) and (8, 48) is 8.