154k views
8 votes
Pls Help, Max Points

Pls Help, Max Points-example-1

2 Answers

7 votes


\\ \rm\Rrightarrow 36^x-7(6^x)-18=0


\\ \rm\Rrightarrow 6^(2x)-7(6^x)-18=0


\\ \rm\Rrightarrow (6^x)^2-7(6^x)-18=0

  • Let 6^x=p


\\ \rm\Rrightarrow p²-7p-18=0


\\ \rm\Rrightarrow p²-9p+2p-18=0


\\ \rm\Rrightarrow p(p-9)+2(p-9)=0


\\ \rm\Rrightarrow (p+2)(p-9)=0

Omit negative as we have to solve for real nos

  • p=9

put value


\\ \rm\Rrightarrow 6^x=9


\\ \rm\Rrightarrow ln6^x=ln3^2


\\ \rm\Rrightarrow xln6=2ln3


\\ \rm\Rrightarrow x=(2ln3)/(ln6)

User Hamidreza Sadegh
by
8.1k points
6 votes

Answer:


\large \text{$ x = (2\ln 3)/(\ln 6) $}

Explanation:


\large \begin{aligned}36^x-7(6^x)-18 & =0\\(6^2)^x-7(6^x)-18 & =0\\(6^x)^2-7(6^x)-18 & =0\\\\\textsf{let }6^x=y\implies y^2-7y-18 & = 0\\(y-9)(y+2) & = 0\\\implies y & = 9, -2\\\\\implies 6^x & = 9, -2\\\textsf{Cannot take logs of -ve numbers} \implies \ln 6^x & = \ln 9 \quad \sf(only)\\x \ln 6 & = 2\ln 3\\x & = (2\ln 3)/(\ln 6)\\\end{aligned}

User Dennisdrew
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories