Answer:
The leading coefficient is 3
Explanation:
Polynomials
Given the roots of a polynomial x1,x2,x3, it can be expressed as:
![p(x)=a(x-x1)(x-x2)(x-x3)](https://img.qammunity.org/2021/formulas/mathematics/college/ykq9z1o5gmqcysfyuc5675zejje27wd4rs.png)
Where a is the leading coefficient.
We are given the roots x1=-6, x2=7i, x3=-7i, thus:
![p(x)=a(x+6)(x-7i)(x+7i)](https://img.qammunity.org/2021/formulas/mathematics/college/1kfuxurgvxgojrj7agmuko6ircf53zm222.png)
Operating the product of the conjugated imaginary roots:
![p(x)=a(x+6)(x^2+49)](https://img.qammunity.org/2021/formulas/mathematics/college/g61n9mvktolmm0if3ihl0s8mwibylg489b.png)
Knowing p(2)=1,272 we can find the value of a
![p(2)=a(2+6)(4+49)=1,272](https://img.qammunity.org/2021/formulas/mathematics/college/39q9rxwqtkmz8ay4xuvilygf4u58afweuw.png)
Operating:
![a(8)(53)=1,272](https://img.qammunity.org/2021/formulas/mathematics/college/ytq151fqfpn3t9kry72sncei4ehxw6ggmg.png)
![424a=1,272](https://img.qammunity.org/2021/formulas/mathematics/college/a7lxqacstndcm9bsxun20xo4coq1od7l73.png)
Solving:
![a=1,272/424](https://img.qammunity.org/2021/formulas/mathematics/college/31yi3hhqfgtrouv00eq6k09l38on27fqy4.png)
a=3
The leading coefficient is 3