Answer:
A) Upper limit = 7.39
Lower limit = 6.37
Margin of error = 0.51
B)Sample size = 87
C) Upper limit = 2218.50
Lower limit = 1909.50
Margin of error = 154.50
Explanation:
We are given;
x¯ = $6.88 per 100 pounds
σ = $1.98 per 100 pounds
n = 45
A) We want to find a 90% Confidence interval. It means the significance level is; 1 - 0.9 = 0.1
Critical z-value for significance level of 0.1 is z = 1.645
Now, margin of error is;
MOE = zσ/√n
MOE = (1.645 × 1.98)/√40
MOE ≈ 0.51
Confidence interval is;
CI = x¯ ± MOE
CI = 6.88 ± 0.51
CI = ((6.88 + 0.51), (6.88 - 0.51))
CI = (7.39, 6.37)
Upper limit = 7.39
Lower limit = 6.37
B) We are given E = 0.35
Thus;
E = zσ/√n
Rearranging, we have;
n = (zσ/E)²
n = (1.645 × 1.98/0.35)²
n ≈ 87
Sample size = 87
C)We are told that the farm brings 15 tons of watermelon to market.
Also, 1 ton = 2000 pounds
Thus;
15 tons = 15 × 2000 pounds = 30000 pounds
Now this is per 100 pounds.
Thus, we can write as: 30000/100 = 300 pounds
So;
x¯ = 300 × 6.88
x¯ = 2064
σ = 1.98 × 300
σ = 594
Critical z-value for significance level of 0.1 is z = 1.645
Now, margin of error is;
MOE = zσ/√n
MOE = (1.645 × 594)/√40
MOE ≈ 154.50
Confidence interval is;
CI = x¯ ± MOE
CI = 2064 ± 154.50
CI = (2064 + 154.50, 2064 - 154.50)
CI = (2218.5, 1909.5)
Upper limit = 2218.50
Lower limit = 1909.50