148k views
3 votes
Big chickens: The weights of broilers (commercially raised chickens) are approximately normally distributed with mean 1387 grams and standard deviation 192 grams. Use the TI-84 Plus calculator to answer the following. (a) What proportion of broilers weigh between 1150 and 1308 grams? (b) What is the probability that a randomly selected broiler weighs more than 1510 grams? (c) Is it unusual for a broiler to weigh more than 1610 grams? Round the answers to at least four decimal places.

1 Answer

4 votes

Answer:

a) 0.2318

b) 0.2609

c) No it is not unusual for a broiler to weigh more than 1610 grams

Explanation:

We solve using z score formula

z-score is is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean 1387 grams and standard deviation 192 grams. Use the TI-84 Plus calculator to answer the following.

(a) What proportion of broilers weigh between 1150 and 1308 grams?

For 1150 grams

z = 1150 - 1387/192

= -1.23438

Probability value from Z-Table:

P(x = 1150) = 0.10853

For 1308 grams

z = 1308 - 1387/192

= -0.41146

Probability value from Z-Table:

P(x = 1308) = 0.34037

Proportion of broilers weigh between 1150 and 1308 grams is:

P(x = 1308) - P(x = 1150)

0.34037 - 0.10853

= 0.23184

≈ 0.2318

(b) What is the probability that a randomly selected broiler weighs more than 1510 grams?

1510 - 1387/192

= 0.64063

Probabilty value from Z-Table:

P(x<1510) = 0.73912

P(x>1510) = 1 - P(x<1510) = 0.26088

≈ 0.2609

(c) Is it unusual for a broiler to weigh more than 1610 grams?

1610- 1387/192

= 1.16146

Probability value from Z-Table:

P(x<1610) = 0.87727

P(x>1610) = 1 - P(x<1610) = 0.12273

≈ 0.1227

No it is not unusual for a broiler to weigh more than 1610 grams

User Chris Vdp
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories