Answer:
a
P(X \le 250 ) = 0.7564 [/tex] ,
,
![P(X < 300 ) = 0.09922](https://img.qammunity.org/2021/formulas/mathematics/high-school/xiblwx2pt7yq06jwrc6idz72tjfhhvpbjc.png)
b
![P(100 < X < 250 ) =0.644](https://img.qammunity.org/2021/formulas/mathematics/high-school/rcr9alyfz62gagbxfba9o154gvk3xc4aav.png)
c
Explanation:
From the question we are told that
The value for
![\alpha = 2.6](https://img.qammunity.org/2021/formulas/mathematics/high-school/s4b5fon7x50wy8xsp86l2b4u09sq1a08s3.png)
The value for
![\beta = 220](https://img.qammunity.org/2021/formulas/mathematics/high-school/2w5z6o5ffwxoguv0m8hs9m48in5clpdpti.png)
Generally the Weibull distribution function is mathematically represented as
![F( x , \alpha , \beta ) = \left \{ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x < 0} \atop { 1- e^{-((x)/(\beta ) )^(\alpha ) }}\ \ \ \ \ \ x \ge 0} \right](https://img.qammunity.org/2021/formulas/mathematics/high-school/kb5nwxztxsn4jr87xuyfx40j1bgixiqpqh.png)
Generally the probability that a specimen's lifetime is at most 250 is mathematically represented as
![P(X \le 250 ) = F(250, 2.7 , 220 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/53me2tw9h5yype6fcsw3ge0u2j73q2s2dj.png)
![P(X \le 250 )=1 - e^{- ((250)/(220) )^(2.7)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/kzvchxxjt4ok574txutn1nkp8sjvz0h9xc.png)
![P(X \le 250 ) = 1 - 0.2436](https://img.qammunity.org/2021/formulas/mathematics/high-school/25w1w58egaxid9uhbx5qa3k4lfq5luolfb.png)
![P(X \le 250 ) = 0.7564](https://img.qammunity.org/2021/formulas/mathematics/high-school/2sgoiz6vtgtafl7010fp5d7rm9gor96ais.png)
Generally the probability that a specimen's lifetime is less than 250
![P(X < 250 ) = F(250, 2.7 , 220 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/j4nymj6rota7u1tl0t7y9pb19o2ajvdq8d.png)
[texP(X < 250 ) =1 - e^{- (\frac{250}{220} )^{2.7}}[/tex]
![P(X < 250 ) = 1 - 0.2436](https://img.qammunity.org/2021/formulas/mathematics/high-school/tdhcgxlayq6u0b3ne4kyoio088a5ilhin9.png)
Generally the probability that a specimen's lifetime is more than 300
![P(X > 300 ) = 1- p(X \le 300 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/r57k8vx48bqx31vcgex1kqnlyp33s2d5in.png)
![P(X > 300 ) = 1- F(300, 2.7 , 220 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/t6ao0hfq9at38z9gr1miwm5ujyash8qwl6.png)
[texP(X < 300) =1- [1 - e^{- (\frac{300}{220} )^{2.7}}][/tex]
![P(X < 300 ) = 0.09922](https://img.qammunity.org/2021/formulas/mathematics/high-school/xiblwx2pt7yq06jwrc6idz72tjfhhvpbjc.png)
Generally the probability that a specimen's lifetime is between 100 and 250 is
![P(100 < X < 250 ) = P(X < 250) - P(X < 100)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wqtgacdve8l0q5vg3b61bt3z5gi0203ypj.png)
=>
![P(100 < X < 250 ) =F(250 , 2.7 , 220 ) - F(100 , 2.7 , 220 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/j5keun7afu1jbh8rp5upwytfygvqpntc1y.png)
=>
![P(100 < X < 250 ) =(1 - e^{-((250)/(220))^(2.7)}) - (1 - e^{-((100)/(220))^(2.7)})](https://img.qammunity.org/2021/formulas/mathematics/high-school/687n1ppbe1l9ln4co2q4jjlj2ece8f55jn.png)
=>
![P(100 < X < 250 ) = (1 - 0.244 ) - (1- 0.888)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7qssecqnkt1qb9yha1sb7awultyfd33o5s.png)
=>
![P(100 < X < 250 ) =0.644](https://img.qammunity.org/2021/formulas/mathematics/high-school/rcr9alyfz62gagbxfba9o154gvk3xc4aav.png)
Generally the value such that exactly 50% of all specimens
![P(X > x) = 1-P(X < x) = 0.50](https://img.qammunity.org/2021/formulas/mathematics/high-school/og9ocydw58lrkitt5lqkb2m0jvcrby2pvf.png)
=>
![P(X > x) = 1- (1 - e^{- ((x)/(220)) ^(2.7)}) = 0.50](https://img.qammunity.org/2021/formulas/mathematics/high-school/n6bx72sfcbr5hoq8yzc95znk26ykp9rskx.png)
=>
=>
=>
=>
=>