232k views
4 votes
Write a linear function f with f(-3)=1 and f(13)=5

1 Answer

4 votes

Answer:


y = (1)/(4)x +(7)/(4)

Explanation:

Given


f(-3) = 1


f(13) = 5

Required

Determine the linear function

A function is of the form:


y = f(x)

Writing the given parameters in (x,y) format, we have:


f(-3) = 1 implies (-3,1)


f(13) = 5 implies (13,5)

So, the x and y values are:

(-3,1) and (13,5)

i.e.


(x_1,y_1) = (-3,1)


(x_2,y_2) = (13,5)

First, we need to determine the slope using:


m = (y_2 - y_1)/(x_2 - x_1)


m = (5 - 1)/(13 - -(3))


m = (4)/(13 +3)


m = (4)/(16)


m = (1)/(4)

The equation is calculated as thus:


y - y_1 = m(x - x_1)

Where


(x_1,y_1) = (-3,1)


m = (1)/(4)


y - 1 = (1)/(4)(x - (-3))


y - 1 = (1)/(4)(x +3)


y = (1)/(4)(x +3) + 1


y = (1)/(4)x +(3)/(4) + 1


y = (1)/(4)x +(3+4)/(4)


y = (1)/(4)x +(7)/(4)

User Egvo
by
5.3k points