Answer:
Given function:
![g(x)=(4)/(3)(2)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/1kxbzqhfrou0e0le95k80t8p6ymb213h0j.png)
To find the y-intercept, input x = 0:
![\implies g(0)=(4)/(3)(2)^0](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7ufg8ti1y4egjm4ftisfrujps1hlf6bqj.png)
![\implies g(0)=(4)/(3)\cdot 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ron0j2w371bgn0947i4as50aae5z0o6ezk.png)
![\implies g(0)=(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xvk8tyv3d2v737c8l3a5x6nk49lewkvxot.png)
End behaviors:
![\textsf{As }x \rightarrow \infty, g(x) \rightarrow \infty](https://img.qammunity.org/2023/formulas/mathematics/high-school/egac3rv77aqz6ruhlipzj2xdh8xnz0tkfo.png)
![\textsf{As } x \rightarrow -\infty, 2^x \rightarrow 0 \implies \textsf{As }x \rightarrow -\infty, g(x) \rightarrow 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/598gzuw4tc1s0grlqp217pqqx5zqq210j1.png)
Therefore, y = 0 is an asymptote (the curve gets close to but never touches the x-axis).
To help graph accurately (rather than sketch), input other positive values of x as plot points for the curve:
![\implies g(x)=(4)/(3)(2)^1=(8)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gp14pxowdmqhs9kkswalgnf0nbfu0xramb.png)
![\implies g(x)=(4)/(3)(2)^2=(16)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/45r8f3u0qqkow88csg8ho7yl03azi639o4.png)
![\implies g(x)=(4)/(3)(2)^3=(32)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/h7x50e8tvosi088swtnuyvai25mwwnvcs4.png)