This is an exercise in the law of Jackes Alejandro Charles.
To start solving this exercise, we obtain the following data:
Data:
- V₁ = 300 cm³
- T₁ = 300 k
- V₂ = ¿?
- T₂ = 600 km
If the temperature doubles the volume doubles; If the temperature is halved, the volume is halved.
"Mathematically this law expresses itself"
![\bf{(V_(1))/(T_(1))=(V_(2))/(T_(2)) \qquad \ in \ where: }](https://img.qammunity.org/2023/formulas/chemistry/college/hhty5rfpf2du7rjwsirpfh33fi8i7uzlvt.png)
- V₁= Initial volume
- V₂ = Final volume
- T₁ = Initial temperature
- T₂ = Final temperature
We can also express it: V₁T₂=V₂T₁
Clear for "V₂":
![\bf{V_(2)=(V_(1)T_(2))/(T_(1)) \ \ \to \ \ \ Clear \ formula }](https://img.qammunity.org/2023/formulas/chemistry/college/5mzo4n70mfhqaf63l3m9iy87fnp080wdeu.png)
We clear our data in the formula:
![\bf{V_(2)=\frac{(300 \ cm^(3))(600 \\ot{k}) }{300 \\ot{K}} }](https://img.qammunity.org/2023/formulas/chemistry/college/q5eop37ifb4mq0j1shrkrtzgc4oez3jkqv.png)
![\bf{V_(2)=600 \ cm^(3) }](https://img.qammunity.org/2023/formulas/chemistry/college/l33ojnz08i7yi1eet15d2mw76mfax6zx20.png)
The new volume of the balloon will be 600 cm³.
![\huge \red{\boxed{\green{\boxed{\boldsymbol{\purple{Pisces04}}}}}}](https://img.qammunity.org/2023/formulas/chemistry/college/qa2602crykoriarhnqjna4u4fv297g2rm2.png)