60.9k views
6 votes
Solve for Y

5y² - 17y=-6
If there is more than one solution, separate them with commas.
or is there no solution?

2 Answers

9 votes


\: \: \: \: \: \: \: \: \: \: \: \: \purple\diamond{\boxed{\boxed{\boxed{\sf{{ \pink{ANSWER}}}}}}}


5y^2- 17y=-6

Move terms to the left side


5y^2- 17y=-6


5y^2- 17y-(-6) = 0

Use the sum-product pattern


5y^2-17y+6=0


5y^2-2y-15y+6=0

Common factor from the two pairs


(5y^2-2y)+(-15y+6) = 0


y(5y-2)-3(5y-2) = 0

Rewrite in factored form


y(5y-2)-3(5y-2) = 0


(y-3)(5y-2) = 0

Create separate equations


(y-3)(5y-2) = 0


y-3=0


5y-2=0

Solve :

Rearrange and isolate the variable to find each solution


y = 3


y = (2)/(5)

User Manuel Riviere
by
4.5k points
5 votes


\huge\underline\mathcal{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}

the question asks us to find the values of y.

the question can be solved as follows ~


\longrightarrow \: 5y {}^(2) - 17y = - 6

let's first convert the equation into its general formula , i.e. , ax² + bx + c = 0


\longrightarrow \: 5y {}^(2) - 17y + 6 = 0

using splitting the middle term , let's find out the factors of the given equation ~


\longrightarrow \: 5y {}^(2) - 15y - 2y + 6 = 0 \\ \\ \longrightarrow \: 5y \: (y - 3) - 2 \: (y - 3) = 0 \\ \\ \longrightarrow \: 5y - 2 = 0 \: \: \: or \: \: \: y - 3 = 0 \\ \\ \longrightarrow \:\boxed{ y = (2)/(5)} \: \: \: or \: \: \: \boxed{y = 3}

hope helpful ~

User Robie Basak
by
4.3k points