112k views
3 votes
1-cos2a/1+cosa if 1/3 how much sin²a

1 Answer

2 votes

Answer:

(1-cos2A) /(1+cos2A) =tan²A

Proof:

We know that,

cos(A+B) =cosA.cosB-sinA.sinB

=>cos2A=cos(A+A)

=>cos2A=cosA.cosA - sinA.sinA

=>cos2A=cos²A-sin²A

=>cos2A=(cos²A-sin²A)/(cos²A+sin²A

Since {cos²A+sin²A=1}

Divide the numerator & the denominator by (cos²A) to get,

cos2A = {(cos²A-sin²A) ÷cos²A} / {(cos²A+sin²A) ÷cos²A}

cos2A ={(1-tan²A)/(1+tan²A)}

Then,

1-cos2A = 1-[{(1–tan²A)/(1+tan²A)}]

1-cos2A =(1+tan²A-1+tan²A)/(1+tan²A)

1-cos2A=(2tan²A)/(1+tan²A)

And now.......

1+cos2A=1+[{(1-tan²A)/(1+tan²A)}]

1+cos2A={1+tan²A+1-tan²A}/{1+tan²A}

1+cos2A=2/(1+tan²A)

So now,

(1-cos2A)/(1+cos2A)= {2tan²A/(1+tan²A)}÷{2/(1+tan²A)}

={(2tan²A)(1+tan²A)}÷{2(1+tan²A)}

=tan²A

Explanation:

make me as brain liest

User Shinnok
by
8.1k points

Related questions

1 answer
5 votes
167k views
asked Mar 24, 2017 96.1k views
Coffeduong asked Mar 24, 2017
by Coffeduong
7.5k points
1 answer
0 votes
96.1k views
asked Jan 14, 2019 118k views
Eriq asked Jan 14, 2019
by Eriq
8.4k points
1 answer
3 votes
118k views