95.1k views
5 votes
Given m<12= 121 and m<6= 75, find the measure of each missing angle.

Given m<12= 121 and m<6= 75, find the measure of each missing angle.-example-1

1 Answer

2 votes

Answer/Step-by-step explanation:

Given:

m<12 = 121°

m<6 = 75°

a. m<1 = m<6 (vertical angles)

m<1 = 75° (substitution)

b. m<12 = m<1 + m2 (alternate exterior angles)

121° = 75° + m<2 (substitution)

121° - 75° = m<2 (subtraction property of equality)

46° = m<2

m<2 = 46°

c. m<1 + m<2 + m<3 = 180° (angles on a straight line)

75° + 46° + m<3 = 180° (substitution)

121° + m<3 = 180°

m<3 = 180° - 121° (subtraction property of equality)

m<3 = 59°

d. m<4 = m<3 (vertical angles)

m<4 = 59° (substitution)

e. m<5 + m<4 + m<6 = 180° (angles on a straight line)

m<5 + 59° + 75° = 180° (substitution)

m<5 + 134° = 180°

m<5 = 180° - 134° (Subtraction property of equality)

m<5 = 46°

f. m<7 = m<12 (vertical angles)

m<7 = 121° (substitution)

g. m<8 = m<4 (vertical angles)

m<8 = 59° (substitution)

h. m<9 = m<6 (Alternate Interior Angles)

m<9 = 75° (substitution)

i. m<10 + m<9 = 180° (Linear Pair)

m<10 + 75° = 180° (substitution)

m<10 = 180° - 75° (Subtraction property of equality)

m<10 = 105°

j. m<11 = m<8 (vertical angles)

m<11 = 59° (substitution)

k. m<13 = m<10 (vertical angles)

m<13 = 105° (substitution)

l. m<14 = m<9 (vertical angles)

m<14 = 75° (substitution)

User Ramzan Mahmood
by
4.8k points