121k views
10 votes
triangle lmn, with vertices L(-5,-7), M(-2,-5), and N(-6,-4), is drawn on the coordinate grid bellow. what is the area, in square units, of triangle LMN?

2 Answers

1 vote

Check the picture below.


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ L(\stackrel{x_1}{-5}~,~\stackrel{y_1}{-7})\qquad M(\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5}) ~\hfill LM=√([ -2- -5]^2 + [ -5- -7]^2) \\\\\\ ~\hfill \boxed{LM=√(13)} \\\\\\ M(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-5})\qquad N(\stackrel{x_2}{-6}~,~\stackrel{y_2}{-4}) ~\hfill MN=√([ -6- -2]^2 + [ -4- -5]^2) \\\\\\ ~\hfill \boxed{MN=√(17)}


N(\stackrel{x_1}{-6}~,~\stackrel{y_1}{-4})\qquad L(\stackrel{x_2}{-5}~,~\stackrel{y_2}{-7}) ~\hfill NL=√([ -5- -6]^2 + [ -7- -4]^2) \\\\\\ ~\hfill \boxed{NL=√(10)}


\qquad \textit{Heron's area formula} \\\\ A=√(s(s-a)(s-b)(s-c))\qquad \begin{cases} s=(a+b+c)/(2)\\[-0.5em] \hrulefill\\ a = √(13)\\ b = √(17)\\ c = √(10)\\ s=(√(13)+√(17)+√(10))/(2)\\ \qquad \approx 5.45 \end{cases} \\\\\\ A=\sqrt{5.45(5.45-√(13))(5.45-√(17))(5.45-√(10))}\implies \LARGE\textit{A=5.5}

triangle lmn, with vertices L(-5,-7), M(-2,-5), and N(-6,-4), is drawn on the coordinate-example-1
User Nissa
by
8.2k points
7 votes

Answer:

53

Explanation:

but

User Diego Nieto
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories