81.6k views
12 votes
Log d + x log 9 please help!

1 Answer

4 votes


\begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hfill \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log(d)+x\log(9)\implies \log(d)+x\log(3^2)\implies \log(d)+\log[(3^2)^x] \\\\\\ \log(d)+\log(3^(2x))\implies \log(d\cdot 3^(2x))\implies \log(d3^(2x))

User Kapilfreeman
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories