Answer:
![\boxed {\boxed {\sf 18 \ m/s}}](https://img.qammunity.org/2023/formulas/physics/high-school/h60u87vaob2js07kgl9vz88kknq9t3z4gy.png)
Step-by-step explanation:
The ball is moving in a circle, so the force is centripetal.
One formula for calculating centripetal force is:
![F_c= \frac{mv^2}r}](https://img.qammunity.org/2023/formulas/physics/high-school/tp8uvv1xrdqzdk47h4psby6nq5cxd8dvgv.png)
The mass of the ball is 0.5 kilograms. The radius is 1.9 meters. The centripetal force is 85 Newtons or 85 kg*m/s².
= 85 kg*m/s²- m= 0.5 kg
- r= 1.9 m
Substitute the values into the formula.
![85 \ kg*m/s^2 = (0.5 \ kg *v^2)/(1.9 \ m)](https://img.qammunity.org/2023/formulas/physics/high-school/m3kxkboezabcy9adzxzijn912dkijvhvwx.png)
Isolate the variable v. First, multiply both sides by 1.9 meters.
![(1.9 \ m)(85 \ kg*m/s^2) = (0.5 \ kg *v^2)/(1.9 \ m)*1.9 \ m](https://img.qammunity.org/2023/formulas/physics/high-school/ofynka7oz77pnkbbairxf7x9n1i8n46b57.png)
![(1.9 \ m)(85 \ kg*m/s^2) = {0.5 \ kg *v^2}](https://img.qammunity.org/2023/formulas/physics/high-school/5jq0pafpt4zuyifidgqvfl06mn8so0k39u.png)
![161.5 \ kg*m^2/s^2 = 0.5 \ kg*v^2](https://img.qammunity.org/2023/formulas/physics/high-school/810194j8wnb97v1qr98wtcug2lmteew0nm.png)
Divide both sides by 0.5 kilograms.
![\frac {161.5 \ kg*m^2/s^2}{0.5 \ kg} = (0.5 \ kg*v^2)/(0.5 \ kg)](https://img.qammunity.org/2023/formulas/physics/high-school/wh5h551brg2fw8ho9bx168xx19q3efyd1v.png)
![\frac {161.5 \ kg*m^2/s^2}{0.5 \ kg} =v^2](https://img.qammunity.org/2023/formulas/physics/high-school/25dftve88lu8dwroenquoykwegjukt0296.png)
![323 \ m^2/s^2 = v^2](https://img.qammunity.org/2023/formulas/physics/high-school/82t69pm98xbuec0prqznzcuhqxetoizun9.png)
Take the square root of both sides of the equation.
![\sqrt {323 \ m^2/s^2} =\sqrt{ v^2](https://img.qammunity.org/2023/formulas/physics/high-school/hq1auswhrp4fqmhohqp9clzyrgmfxfpq7z.png)
![\sqrt {323 \ m^2/s^2} =v](https://img.qammunity.org/2023/formulas/physics/high-school/dh97htfz5n9ybtuo1erot5h3sjs6kn9zsv.png)
![17.9722007556 \ m/s =v](https://img.qammunity.org/2023/formulas/physics/high-school/qv2voe3be6nomqzqq8eitb7al0fg1mi96s.png)
The original measurements have 2 significant figures, so our answer must have the same.
For the number we found, 2 sig fig is the ones place. The 9 in the tenth place tells us to round the 7 to an 8.
![18 \ m/s =v](https://img.qammunity.org/2023/formulas/physics/high-school/8e6yug2s17cxmek7g4g34qi3l1pkohufc1.png)
The maximum speed is approximately 18 meters per second.