208k views
5 votes
Please solve this question.​

Please solve this question.​-example-1
User Chaunte
by
8.0k points

1 Answer

4 votes

Answer: see proof below

Explanation:

Use the Product to Sum Identity: cos A · cos B = [cos (A - B) + cos (A + B)]/2

Use the Odd Function Identity: cos (-A) = - cos (A)

Proof LHS → RHS:


\text{LHS:}\qquad \qquad 2\cos \bigg((11\pi)/(16)\bigg)\cdot \cos \bigg((\pi)/(16)\bigg)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)


\text{Prod to Sum:}\quad (2\bigg[\cos \bigg(((11\pi -\pi))/(16)\bigg)+\cos \bigg(((11\pi+\pi)/(16)\bigg)\bigg])/(2)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)


=\cos \bigg((10\pi)/(16)\bigg)+\cos \bigg((12\pi)/(16)\bigg)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)


=\cos \bigg((5\pi)/(8)\bigg)+\cos \bigg((3\pi)/(4)\bigg)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)


=\cos \bigg((-3\pi)/(8)\bigg)+\cos \bigg((-\pi)/(4)\bigg)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)


\text{Odd Functions:}\quad -\cos \bigg((3\pi)/(8)\bigg)-\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((\pi)/(4)\bigg)+\cos \bigg((3\pi)/(8)\bigg)

= 0

LHS = RHS
\checkmark

Please solve this question.​-example-1
User Robin Klose
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories