Answer:
This shows 3 pivot position matrixes.
Explanation:
The given matrix is:
![\left[\begin{array}{ccc}1&-2&-5\\0&4&3\\-3&3&0\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/dpng7kqjzm7z3udoz44679456ry0j3xu0r.png)
The option D is correct for this matrix.
The matrix is invertible and the given matrix has 3 pivot positions.
The matrix is invertible if its determinant is nonzero.
Multiply the 3rd row by 1/3.we get:
![\left[\begin{array}{ccc}1&-2&-5\\0&4&3\\-1&1&0\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/zb7hda4n3zqqjruwbsag62986l8ot09s8h.png)
Now, add the first row with third row:
![\left[\begin{array}{ccc}0&-1&-5\\0&4&3\\-1&1&0\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/4oa57dfxqqpkjy376fzj9iv1p2b7mbbzbp.png)
Replace third row by first row:
![\left[\begin{array}{ccc}-1&1&0\\0&4&3\\0&-1&-5\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/kcsevnl6zdqfecamk0sng6f041vltd1ikg.png)
This shows 3 pivot position matrixes.
Hence, a matrix is invertible and has 3 pivot positions.