Note: Consider we need to find the vertices of the triangle A'B'C'
Given:
Triangle ABC is rotated 90 degrees clockwise about the origin to create triangle A'B'C'.
Triangle A,B,C with vertices at A(-3, 6), B(2, 9), and C(1, 1).
To find:
The vertices of the triangle A'B'C'.
Solution:
If triangle ABC is rotated 90 degrees clockwise about the origin to create triangle A'B'C', then
![(x,y)\to (y,-x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fw1xshbv7s78egr5ys9sxpzlr6vhvh4jrm.png)
Using this rule, we get
![A(-3,6)\to A'(6,3)](https://img.qammunity.org/2021/formulas/mathematics/college/4pe3db9o791q9r4h995wsjsd5abn4hlhew.png)
![B(2,9)\to B'(9,-2)](https://img.qammunity.org/2021/formulas/mathematics/college/qqkwafzqiebf0d55uf3z0hib66dm73ybsi.png)
![C(1,1)\to C'(1,-1)](https://img.qammunity.org/2021/formulas/mathematics/college/wse29zo0f88a69t5p9q999h5yw2dajbwng.png)
Therefore, the vertices of A'B'C' are A'(6,3), B'(9,-2) and C'(1,-1).