161k views
2 votes
Find (a) pq to the nearest tenth and (b) the coordinates of the midpoint of pq p(2,2) q(-3,-6)

User Chandria
by
8.3k points

1 Answer

4 votes


~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P(\stackrel{x_1}{2}~,~\stackrel{y_1}{2})\qquad Q(\stackrel{x_2}{-3}~,~\stackrel{y_2}{-6})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ PQ=√([-3 - 2]^2 + [-6 - 2]^2)\implies PQ=√((-5)^2+(-8)^2) \\\\\\ PQ=√(25+64)\implies PQ=√(89)\implies \boxed{PQ\approx 9.4}


~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ P(\stackrel{x_1}{2}~,~\stackrel{y_1}{2})\qquad Q(\stackrel{x_2}{-3}~,~\stackrel{y_2}{-6}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -3 + 2}{2}~~~ ,~~~ \cfrac{ -6 + 2}{2} \right)\implies \left(\cfrac{-1}{2}~~,~~\cfrac{-4}{2} \right)\implies \left( -\cfrac{1}{2}~~,~~-2 \right)

User Johnny Wu
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories