Answer:
x = 50.5° (3 sf)
Explanation:
Sine Rule for side lengths
![\sf (a)/(\sin A)=(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rilm9ddu7xs8cail7fcdu5l2f452yv46yn.png)
(where A, B and C are the angles and a, b and c are the sides opposite the angles)
Find BD:
![\implies \sf (BD)/(\sin BAD)=(AB)/(\sin BDA)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x8pof5f4vyka8e9i6bwnsocxu221o21y1i.png)
![\implies \sf (BD)/(\sin 50^(\circ))=(5.6)/(\sin 78^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/high-school/jy9cdwju5sgh82hhj3h6k9y3mrfskrrl0g.png)
![\implies \sf BD=(5.6\:sin 50^(\circ))/(\sin 78^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/high-school/v10k8ro162itw2fhqvzmuftbjc7c663ysw.png)
![\implies \sf BD=4.385686657...cm](https://img.qammunity.org/2023/formulas/mathematics/high-school/gxd7sp59cpcgevpqign2l0ipbyiyw3fjxe.png)
Angles on a straight line sum to 180°
⇒ ∠ADB + ∠BDC = 180°
⇒ 78° + ∠BDC = 180°
⇒ ∠BDC = 102°
Sine Rule for angles
![\sf (\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/h784gqfm7zx4ox42zdv8rftvubitn1eeua.png)
(where A, B and C are the angles and a, b and c are the sides opposite the angles)
Find ∠BCD:
![\implies \sf (\sin BCD)/(BD)=(\sin BDC)/(BC)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bti0hxznojcz2vhxzjsx3aru9wuis60k7a.png)
![\implies \sf (\sin BCD)/(4.385...)=(\sin 102^(\circ))/(9.3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ufbgy6gw6qf3bbtp7uoua5h1del6cdjacy.png)
![\implies \sf BCD=\sin^(-1)\left((4.385...\sin 102^(\circ))/(9.3)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/njj19ex0nyv6o1jnuy729k64fnto95z1th.png)
![\implies \sf BCD=27.46935172...^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mhn4k18ssmtqgf39t29bglqyklhhiy3ois.png)
The interior angles of a triangle sum to 180°
⇒ ∠CBD + ∠BDC + ∠BCD = 180°
⇒ x + 102° + 27.469...° = 180°
⇒ x = 50.53064828...°
⇒ x = 50.5° (3 sf)