Answer:
![(d^2y)/(dx^2)_((-2, -1))=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zx9amxp5np6hioc4prfyglkbumjkakhzeo.png)
Explanation:
We have the equation:
![2y^2+2=x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/e1fmmxzyyvsxkaclks8aonp38dz7am5lll.png)
And we want to find d²y/dx² at the point (-2, -1).
So, let's take the derivative of both sides with respect to x:
![(d)/(dx)[2y^2+2]=(d)/(dx)[x^2]](https://img.qammunity.org/2021/formulas/mathematics/high-school/te3zde1u4cxq7iugbpv3ku0v6qllncc7da.png)
On the left, let's implicitly differentiate:
![4y(dy)/(dx)=(d)/(dx)[x^2]](https://img.qammunity.org/2021/formulas/mathematics/high-school/1ls50on7h8yo4926ptc0p7dkvhi47pfg8f.png)
Differentiate normally on the left:
![4y(dy)/(dx)=2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/p15uxaighnz7d5gllcwokmqudcir78yr0u.png)
Solve for the first derivative. Divide both sides by 4y:
![(dy)/(dx)=(x)/(2y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i7r8jaqf02705oh5q51gz8x1rulxcb3csp.png)
Now, let's take the derivative of both sides again:
![(d)/(dx)[(dy)/(dx)]=(d)/(dx)[(x)/(2y)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/c39locie5actoiid9cp6xdb5k06ee3or5q.png)
We will need to use the quotient rule:
![(d)/(dx)[f/g]=(f'g-fg')/(g^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j0vrn6fqgxs0e1tskact5gg0ydwxpids0u.png)
So:
![(d^2y)/(dx^2)=((d)/(dx)[(x)](2y)-x(d)/(dx)[(2y)])/((2y)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1ycp0tqxp1fh1eqawejunqpre1t5vr8jta.png)
Differentiate:
![(d^2y)/(dx^2)=((1)(2y)-x(2(dy)/(dx)))/(4y^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xlyjr1ucfkc85pulpikpi7guxdgyi424mv.png)
Simplify:
![(d^2y)/(dx^2)=(2y-2x(dy)/(dx))/(4y^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rm5dwr7v2e786m6sn1vcs7c4hjzg6nryki.png)
Substitute x/2y for dy/dx. This yields:
![(d^2y)/(dx^2)=(2y-2x(x)/(2y))/(4y^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zdgj8pbfyf2o1pxx56iz7y3jijjnqyxtau.png)
Simplify:
![(d^2y)/(dx^2)=(2y-(2x^2)/(2y))/(4y^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nxllqbp4qgc37v9xb0wunk99s8vudbk7b2.png)
Simplify. Multiply both the numerator and denominator by 2y. So:
![(d^2y)/(dx^2)=(4y^2-2x^2)/(8y^3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sc4uvvly8e2ewkjsgz2ygjhsd97u69pwrz.png)
Reduce. Therefore, our second derivative is:
![(d^2y)/(dx^2)=(2y^2-x^2)/(4y^3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nc6gzll2z9kgz0bsblodd0jnhh3hqfvwys.png)
We want to find the second derivative at the point (-2, -1).
So, let's substitute -2 for x and -1 for y. This yields:
![(d^2y)/(dx^2)_((-2, -1))=(2(-1)^2-(-2)^2)/(4(-1)^3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/flg8g3a9bj6abyy2nr8vga9czsxeymsuqz.png)
Evaluate:
![(d^2y)/(dx^2)_((-2, -1))=(2(1)-(4))/(4(-1))](https://img.qammunity.org/2021/formulas/mathematics/high-school/j1nb4cy91drhpk0ou0a40rdmahc3dtcfvk.png)
Multiply:
![(d^2y)/(dx^2)_((-2, -1))=(2-4)/(-4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2fdpzg8wfnnyo59i5v58axiasb8kso7vgr.png)
Subtract:
![(d^2y)/(dx^2)_((-2, -1))=(-2)/(-4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/umnpx5kw8r85c1y4a8l6s9gt5ppiabmg7g.png)
Reduce. So, our answer is:
![(d^2y)/(dx^2)_((-2, -1))=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zx9amxp5np6hioc4prfyglkbumjkakhzeo.png)
And we're done!