Answer:
17.3 m/s (1 d.p.)
Step-by-step explanation:
Kinetic Energy
![E_k=\sf (1)/(2)mv^2](https://img.qammunity.org/2023/formulas/physics/high-school/7rsu0zg3pxfyu7uav3ny4qwu1jn25fxfk5.png)
where:
= kinetic energy in joules (J)- m = mass in kilograms (kg)
- v = speed in meters per second (m/s)
Gravitational potential energy
![E_p=\sf mgh](https://img.qammunity.org/2023/formulas/physics/high-school/8hnfg3rmm2honm85j0qib5vvqh9se04ab1.png)
where:
= gravitational potential energy in joules (J)- m = mass in kilograms (kg)
- g = gravitational field strength in newtons per kilogram (N/kg)
- h = change in height in meters (m)
Principle of Conservation of Energy
Gravitational potential energy at the top = kinetic energy at the bottom
![\implies \large \text{$ E_(p \sf (top))=E_(k \sf(bottom)) $}](https://img.qammunity.org/2023/formulas/physics/high-school/caye3nv2c3r3bneea8lq057egrvrcm84qv.png)
Given:
The gravitational field strength of the Earth is 10 N/kg (10 newtons per kilogram), therefore:
Substituting the values into the formula and solving for v:
![\implies \large \text{$ E_(p \sf (top))=E_(k \sf(bottom)) $}](https://img.qammunity.org/2023/formulas/physics/high-school/caye3nv2c3r3bneea8lq057egrvrcm84qv.png)
![\implies \sf mgh=(1)/(2)mv^2](https://img.qammunity.org/2023/formulas/physics/high-school/vkr2xmimc7tt0himdj8mq3j4pl9pa16imf.png)
![\implies \sf (5.0)(10)(15)=(1)/(2)(5.0)v^2](https://img.qammunity.org/2023/formulas/physics/high-school/5e50sjtrqwmjokixzw1mi6pqbgzvzhvlwn.png)
![\implies \sf 750=(5)/(2)v^2](https://img.qammunity.org/2023/formulas/physics/high-school/np12xbei69z0gg335ro7ac16qoxaieul52.png)
![\implies \sf v^2=300](https://img.qammunity.org/2023/formulas/physics/high-school/abiavbrkg7li1hod9wukrtf1vp8nusugk3.png)
![\implies \sf v=√(300)](https://img.qammunity.org/2023/formulas/physics/high-school/w1m7r0atfseaag9iaemo05wipjnh2ach7q.png)
![\implies \sf v=17.3\:\: m/s \:\: (1\:d.p.)](https://img.qammunity.org/2023/formulas/physics/high-school/l8okzqhgqe980p5rz0owahvm1oq2wcri8u.png)