Answer:
The answer is (C)
Explanation:
Let us multiply the two trinomials and simplify the product to find the correct choice.
![(2x^(2)+4x-3)(x^(2)-2x+5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/btredzd3lpa3n3fy6f6fjb6m9563y93zfa.png)
To find the product multiply each term in the first bracket by the second bracket, then add the like terms
![2x^(2) (x^(2)-2x+5)=2x^(2)(x^(2))+2x^(2)(-2x)+2x^(2)(5)=2x^(4)-4x^(3)+10x^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1yt63to9s40kolbqldufu5nitb9jxjk5jy.png)
![4x(x^(2)-2x+5)=4x(x^(2))+4x(-2x)+4x(5)=4x^(3)-8x^(2)+20x](https://img.qammunity.org/2021/formulas/mathematics/high-school/1226zh9vbzohtwt4ttq02q4a66nkkiauqf.png)
![(-3)(x^(2)-2x+5)=(-3)(x^(2))+(-3)(-2x)+(-3)(5)=-3x^(2)+6x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/7wos9zkm7nmagaqap4l2znv9s14h53am3u.png)
Now let us add the like terms.
![2x^(4)-4x^(3)+10x^(2)+4x^(3)-8x^(2)+20x-3x^(2)+6x-15=](https://img.qammunity.org/2021/formulas/mathematics/high-school/frsp2yzio32qm8clzywpsxw0usnathnnca.png)
![2x^(4)+(-4x^(3)+4x^(3))+(10x^(2)-8x^(2)-3x^(2))+(6x+20x)-15=](https://img.qammunity.org/2021/formulas/mathematics/high-school/6uwczvx3tg5dol87kdedp3fxea4cktxj2y.png)
Simplify each term
![2x^(4)+(0)x^(3)-x^(2)+26x-15=](https://img.qammunity.org/2021/formulas/mathematics/high-school/l76x7z1io7ftut19hrwjh9nzl44r0wb6qx.png)
![2x^(4)-x^(2)+26x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/i0a7j6ditvu5mi1ac9hpkgk4yur4a9537u.png)
By comparing it with the choices
The answer is (C)