91.0k views
1 vote
Find the slope of the line tangent to the graph of (x^2)-((xy)^(1/2))=(2y^2)+3x at the point (4,1).

1 Answer

5 votes

Compute
(\mathrm dy)/(\mathrm dx) using implicit differentiation:


x^2-(xy)^(1/2)=2y^2+3x


(\mathrm d(x^2))/(\mathrm dx)-(\mathrm d(xy)^(1/2))/(\mathrm dx)=(\mathrm d(2y^2))/(\mathrm dx)+(\mathrm d(3x))/(\mathrm dx)


2x-\frac1{2(xy)^(1/2)}\left((\mathrm dx)/(\mathrm dx)y+x(\mathrm dy)/(\mathrm dx)\right)=4y(\mathrm dy)/(\mathrm dx)+3


2x-\frac1{2(xy)^(1/2)}\left(y+x(\mathrm dy)/(\mathrm dx)\right)=4y(\mathrm dy)/(\mathrm dx)+3


2x-\frac12\left(\frac yx\right)^(1/2)-\frac12\left(\frac xy\right)^(1/2)(\mathrm dy)/(\mathrm dx)=4y(\mathrm dy)/(\mathrm dx)+3


2x-3-\frac12\left(\frac yx\right)^(1/2)=\left(4y+\frac12\left(\frac xy\right)^(1/2)\right)\right)(\mathrm dy)/(\mathrm dx)


4x-6-\left(\frac yx\right)^(1/2)=\left(8y+\left(\frac xy\right)^(1/2)\right)\right)(\mathrm dy)/(\mathrm dx)


(\mathrm dy)/(\mathrm dx)=(4x-6-\left(\frac yx\right)^(1/2))/(8y+\left(\frac xy\right)^(1/2))


(\mathrm dy)/(\mathrm dx)=(4x(xy)^(1/2)-6(xy)^(1/2)-y)/(8y(xy)^(1/2)+x)

Plug in x = 4 and y = 1 to find that the tangent line's slope is 19/20.

User HHK
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories