233k views
4 votes
Solve the following matrix system:

The explanation how you did it would help! Thanks in advance!

Solve the following matrix system: The explanation how you did it would help! Thanks-example-1

1 Answer

4 votes

Answer:

See below

Explanation:


X - Y = \begin{pmatrix} 1 & 2 & 7 \\ - 1 & 3 & 5 \\ 3 & 1 & 7 \end{pmatrix} \\\\ X + Y = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ - 1 & 3 & 3 \end{pmatrix} \\ adding \: both \: the \: matrices \\ \\ X - Y + X + Y \\ = \begin{pmatrix} 1 & 2 & 7 \\ - 1 & 3 & 5 \\ 3 & 1 & 7 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ - 1 & 3 & 3 \end{pmatrix} \\\\ 2X= \begin{pmatrix} 1 + 1 & 2 + 0 & 7 + 1 \\ - 1 + 1 & 3 + 1 & 5 + 3\\ 3 - 1 & 1 + 3 & 7 + 3 \end{pmatrix} \\ \\ 2X= \begin{pmatrix} 2 & 2 & 8 \\ 0 & 4 & 8\\ 2 & 4 & 10 \end{pmatrix} \\ \\ X= (1)/(2) \begin{pmatrix} 2 & 2 & 8 \\ 0 & 4 & 8\\ 2 & 4 & 10 \end{pmatrix}\\ \\ X= \huge\begin{pmatrix} (2)/(2) & (2)/(2) & (8)/(2) \\ \\ (0)/(2) & (4)/(2) & (8)/(2)\\ \\ (2)/(2) & (4)/(2) & (10)/(2) \end{pmatrix} \\ \\ \huge \red{X= \begin{pmatrix} 1 & 1 & 4\\ \\ 0 & 2 & 4\\ \\ 1 & 2& 5 \end{pmatrix}} \\ \\ subtracting \: the \: value \: of \: x \: from \: matrix \: (2) \\ \\ X + Y - X \\ = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ - 1 & 3 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 4 \\ 0 & 2 & 4\\ 1 & 2& 5 \end{pmatrix} \\ \\ Y = \begin{pmatrix} 1 - 1 & 0 - 1 & 1 - 4 \\ 1 - 0& 1 - 2 & 3 - 4 \\ - 1 - 1 & 3 - 2 & 3 - 5 \end{pmatrix} \\ \\ \huge \purple{Y = \begin{pmatrix} 0 & - 1 & - 3 \\ 1 & - 1 & - 1 \\ - 2 & 1 & - 2 \end{pmatrix}}

User Bill Gates
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories