162k views
18 votes
What is the equation of line a [2 points]​

User Wilder
by
7.6k points

2 Answers

3 votes

Answer:

The two-point form of a line is used for finding the equation of a line given two points (x1,y1) ( x 1 , y 1 ) and (x2,y2) ( x 2 , y 2 ) on it. The two point-form of a line is:y−y1=y2−y1x2−x1(x−x1) y − y 1 = y 2 − y 1 x 2 − x 1 ( x − x 1 ) OR y−y2=y2−y1x2−x1(x−x2) y − y 2 = y 2 − y 1 x 2 − x 1 ( x − x 2 ) .

User Bhavin
by
8.1k points
10 votes

Final Answer:

The equation of the line passing through the points (2, 3) and (4, 7) is y = 2x - 1.

Step-by-step explanation:

To determine the equation of a line with two given points (x₁, y₁) and (x₂, y₂), we employ the point-slope form: y - y₁ = (y₂ - y₁) / (x₂ - x₁) * (x - x₁).

For the specific points (2, 3) and (4, 7), calculate the slope (m):


\[m = (7 - 3) / (4 - 2) = 4 / 2 = 2\]

Substitute the values into the point-slope form, choosing one of the points (e.g., (2, 3)):


\[y - 3 = 2(x - 2)\]

Distribute the 2 on the right side:


\[y - 3 = 2x - 4\]

Add 3 to both sides to isolate y:


\[y = 2x - 1\]

Hence, the equation of the line passing through (2, 3) and (4, 7) is y = 2x - 1.

Complete the question:

What is the equation of a line passing through the points
\((2, 3)\) and \((4, 7)\)?

User Usman Sabuwala
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.