Answer:
The answer is below
Step-by-step explanation:
The load impedance =
![z_L=(30-j50)\Omega\\](https://img.qammunity.org/2021/formulas/engineering/college/p131xj8b1bc1obpmy87mrhgn27nvmxqdjr.png)
Characteristic impedance (Zo) = 50 Ω
Wavelength (λ) = 8 cm = 0.08 m
a) The reflection coefficient at the load is given as:
![\Gamma=(Z_L-Z_o)/(Z_L+Z_o)=(30-j50-50)/(30-j50+50)=0.57\angle -79.8^o](https://img.qammunity.org/2021/formulas/engineering/college/9iyunh2h9ou274hqf1j3cwawkd8mrv4bia.png)
b) The standing wave ratio (VSWR) is given as:
![VSWR=(1+|\Gamma|)/(1-|\Gamma|)=(1+0.57)/(1-0.57) =3.65](https://img.qammunity.org/2021/formulas/engineering/college/awhndlalwy0h1qvzsazlffuzfdf7lbzhma.png)
c) The position of the voltage maximum nearest the load is given asL
![d_(max)=(\theta_\Gamma*\lambda)/(4\pi)+(n\lambda)/(2)=(-79.8*0.08\ m)/(4\pi)*(\pi)/(180)+(n*0.08)/(2)=-0.00887+0.04=0.0311\ m\\\\d_(max)=3.11\ cm](https://img.qammunity.org/2021/formulas/engineering/college/h47m9s2eivxc7el42jdzl7olzq3zd5zvro.png)
d) The current maximum occurs at the voltage minimum. Hence:
![d_(min)=d_(max)-(\lambda)/(4)=3.11\ cm-(8\ cm)/(4)=1.11\ cm](https://img.qammunity.org/2021/formulas/engineering/college/qkxqeh0i00n2lqj7ctvvdje35y26zqqyme.png)