192k views
1 vote
2- If A=(3, 4) and B = (7,8), find AB.​

User Hlovdal
by
7.9k points

2 Answers

0 votes


\huge \tt \color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }


\large\underline{ \boxed{ \sf{✰\:Important\: points }}}

➢ Here question is asking to find the distance between points "A" and "B"

➢we can easily solve such ques by understanding a simple concept of Euclidean distance formula

➢ DISTANCE FORMULA :- Any algebraic expression that gives the distance between two points in a particular coordinate system in a particular number of dimensions


\rule{80mm}{2.5pt}


{ \boxed{✜\underline{ \boxed{ \sf{Distance \: Formula = \sqrt{{(x_2 - x_1)}^(2) + {(y_2 - y_1) }^(2) } }}}✜}}

★ Here


  • \sf \:➣ x_2 = 7 \\

  • \sf➣x_1=3


  • \sf➣y_2=8


  • \sf➣y_1=4


\rule{80mm}{2.5pt}


\large\underline{ \boxed{ \sf{✰\:Now\: substitute\:value}}}


\sf \: ➛ \: distance = \sqrt{{(x_2 - x_1)}^(2) + {(y_2 - y_1) }^(2)} \\ \sf \: ➛distance = \sqrt{{(7 - 3)}^(2) + {(8 - 4) }^(2)} \\ \sf ➛solving \: bracket\\ \sf \: ➛distance =\sqrt{{(4)}^(2) + {(4) }^(2)} \\ \sf \: ➛solving \: square \: roots \\ \sf \: ➛distance = √(32) \\ \sf \: ➛distance = √(16 * 2) \\ \sf \: ➛distance = √(4 * 4 * 2) \\ \sf \: ➛distance =4 √(2) units


\rule{80mm}{2.5pt}

Hence distance of AB =


{ \boxed{✟\underline{ \boxed{ \sf{\: AB=4 √(2)units {\green ✓}}}}✟}}

Hope it helps !

User Vincent Dagpin
by
8.4k points
5 votes

Use distance formula and take this question down, easily.

Explanation:

Distance xy =


\sqrt{ {(x_2 - x_1) }^(2) + {(y_2 - y_1)}^(2) }

Therefore AB

=
√((7-3)^2 +(8-4)^2)

=
√((4)^2 +(4)^2)

=
√(32)

=
\boxed{4 √(2)-units}

User Rawathemant
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories