Answer:
The length of the diagonal of the square is about 14.142 feet
Explanation:
Step 1: Determine the length
![P = 4(l)](https://img.qammunity.org/2023/formulas/mathematics/college/9c5sdlpxiyafsai7wf4w0svr813rrqiv21.png)
![40\ ft = 4(l)](https://img.qammunity.org/2023/formulas/mathematics/college/q1dmhji3zvskv0tyrzd3ucfwya9u1ndhq8.png)
![(40\ ft)/(4)=(4(l))/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/xy51464q5k4685tsw68a38ie7ls67od6jc.png)
![10\ ft = l](https://img.qammunity.org/2023/formulas/mathematics/college/7ld9ui7nwtu4sgly87u12rz82fjg1yl03p.png)
Step 2: Determine the diagonal length
Pythagorean theorem →
![a^2 + b^2 = c^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/3gmi15x8fo87zd30pqhytr7xqz9u9fgnja.png)
a and b are going to be the sides of the square which are both 10 ft so we just plug those in and solve for c
![(10)^2 +(10)^2 =c^2](https://img.qammunity.org/2023/formulas/mathematics/college/ydcvsmty8zwz0oexvjvd1ndj4gll3qczpv.png)
![100+100=c^2](https://img.qammunity.org/2023/formulas/mathematics/college/i3ywp965psx75tlt1qnv3nlc6v56v5r9jh.png)
![√(200)=√(c^2)](https://img.qammunity.org/2023/formulas/mathematics/college/u0v12pyfga1o521nkgs60fecw3cd8f4svw.png)
![14.142=c](https://img.qammunity.org/2023/formulas/mathematics/college/2htu6n0ab5mejnimmxuskeyk5vt0azom0v.png)
Answer: The length of the diagonal of the square is about 14.142 feet