16,227 views
27 votes
27 votes
Given the function f(x) = (1/4)^x , how will g(x) = (1/4) ^x-3 + 5 be translated

User Nanospeck
by
2.7k points

2 Answers

21 votes
21 votes

See

x is decreased by 3 .

and y is increased by 5

So translation is

  • f(x)=(1/4)^x

Hence

  • f(x)=(1/4)^x-3+5

So

x will go 3 units right

y will go 5units up

Graph attached

Given the function f(x) = (1/4)^x , how will g(x) = (1/4) ^x-3 + 5 be translated-example-1
User Swiffy
by
3.2k points
20 votes
20 votes

Answer:

Translations

For
a > 0


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}

Parent function:


f(x)=\left((1)/(4)\right)^x

Translated 3 units to the right:


f(x-3)=\left((1)/(4)\right)^(x-3)

Translated 5 units up:


f(x-3)+5=\left((1)/(4)\right)^(x-3)+5


\implies g(x)=f(x-3)+5

Therefore:


\textsf{g(x) is a translation of f(x) by }\left(\begin{array}{c}3\\5\\\end{array}\right)

User Montgomery Watts
by
2.8k points