182k views
1 vote
Determine the coordinates of the point on the straight line y=3x+1 that is equidistant from the origin and (−3, 4).

1 Answer

5 votes

Answer:


x = (17)/(18)


y = (23)/(6)

Explanation:

Given


y = 3x + 1


Points = (0,0)\ to\ (-3,4)

Required

Determine (x,y) equidistant from the equation and the given point

This question will be answered using distance formula;


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)

Considering The first Point
(0,0)\ to\ (x,y)


(x_1 ,y_1) = (0,0)


(x_2,y_2) = (x,y)

The distance is:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)


d = √(0 - x)^2 + (0 - y)^2)


d = √((- x)^2 + (- y)^2)


d = √(x^2 + y^2)

Considering the second point:
(x,y)\ to\ (-3,4)


(x_1,y_1) = (x,y)


(x_2,y_2) = (-3,4)

The distance is:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)


d = √((x - (-3))^2 + (y - 4)^2)


d = √((x + 3)^2 + (y- 4)^2)


d = √(x^2 + 6x + 9 + y^2- 8y + 16)


d = √(x^2 + 6x + y^2- 8y + 16 + 9)


d = √(x^2 + 6x + y^2- 8y + 25)

Equate both values of d


√(x^2 + 6x + y^2- 8y + 25) = √(x^2 + y^2)

Square both sides


x^2 + 6x + y^2- 8y + 25 = x^2 + y^2

Collect Like Terms


6x - 8y + 25 = x^2 -x^2+ y^2 -y^2


6x - 8y + 25 =0

Recall that
y = 3x + 1


6x - 8(3x + 1) + 25 = 0


6x - 24x - 8 + 25 = 0


-18x+ 17 = 0


-18x=- 17

Solve for x


x = (-17)/(-18)


x = (17)/(18)

Substitute
(17)/(18) for x in
y = 3x + 1


y = 3 * (17)/(18) + 1


y = (17)/(6) + 1


y = (17 + 6)/(6)


y = (23)/(6)

User Nipun Goel
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories