182k views
1 vote
Determine the coordinates of the point on the straight line y=3x+1 that is equidistant from the origin and (−3, 4).

1 Answer

5 votes

Answer:


x = (17)/(18)


y = (23)/(6)

Explanation:

Given


y = 3x + 1


Points = (0,0)\ to\ (-3,4)

Required

Determine (x,y) equidistant from the equation and the given point

This question will be answered using distance formula;


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)

Considering The first Point
(0,0)\ to\ (x,y)


(x_1 ,y_1) = (0,0)


(x_2,y_2) = (x,y)

The distance is:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)


d = √(0 - x)^2 + (0 - y)^2)


d = √((- x)^2 + (- y)^2)


d = √(x^2 + y^2)

Considering the second point:
(x,y)\ to\ (-3,4)


(x_1,y_1) = (x,y)


(x_2,y_2) = (-3,4)

The distance is:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)


d = √((x - (-3))^2 + (y - 4)^2)


d = √((x + 3)^2 + (y- 4)^2)


d = √(x^2 + 6x + 9 + y^2- 8y + 16)


d = √(x^2 + 6x + y^2- 8y + 16 + 9)


d = √(x^2 + 6x + y^2- 8y + 25)

Equate both values of d


√(x^2 + 6x + y^2- 8y + 25) = √(x^2 + y^2)

Square both sides


x^2 + 6x + y^2- 8y + 25 = x^2 + y^2

Collect Like Terms


6x - 8y + 25 = x^2 -x^2+ y^2 -y^2


6x - 8y + 25 =0

Recall that
y = 3x + 1


6x - 8(3x + 1) + 25 = 0


6x - 24x - 8 + 25 = 0


-18x+ 17 = 0


-18x=- 17

Solve for x


x = (-17)/(-18)


x = (17)/(18)

Substitute
(17)/(18) for x in
y = 3x + 1


y = 3 * (17)/(18) + 1


y = (17)/(6) + 1


y = (17 + 6)/(6)


y = (23)/(6)

User Nipun Goel
by
5.6k points